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APPLICATION OF FOURIER-SERIES METHODS 
INTEGRAL EQUATIONS FOR SOLVING 
NONSTATIONARY NONAXISYMMETRIC HEAT 
CONDUCTION PROBLEMS FOR BODIES OF 
REVOLUTION 

AND 

V. N. Maksimovich and O. A. Tsybul'skii UDC 539.377 

We consider the problem of determining nonstationary nonaxisymmetric temperature fields in bodies of 

revolution appearing on heating by internal heat sources through and due to convective heat exchange with 

an external medium. The solution of the problem is represented in the form of a Fourier series in an angular 

coordinate with coefficients being determined by a method of boundary elements. We consider the general 

case and particular cases of the nonstationary nonaxisymmetric heat conduction problem and determine the 

asymptotic temperature distributions with a linear variation in time o/ the  heating medium temperature and 

with heating by moving heat sources. 

In a Cartesian coordinate system (x, y, z) the problem of determining the nonstationary temperature field 

t in a domain D is reduced to solution of the boundary-value problem 

1 Ot 
At - f ,  (x y z) E D  ~ > 0  

a 0~: . . . .  ( 1 )  

M t = g ,  ( x , y ,  z) E-S ,  z > 0 ,  t l t = 0 = t 0 ,  ( x , y ,  z) E D ,  

where f, to, g are given functions; S is the boundary of domain D; Mt = ;tOt/On - at; Ot/On is the normal derivative 

with respect to the surface S; g-- a T  s, and T s is the temperature of the external medium. 

1. General Case of the Nonstationary Heat Conduction Problem. We will solve the nonstationary heat 

conduction problem by the method of the Laplace integral transform with subsequent numerical reversion based 

on a Fourier series method (modified) [1 ]. 

Let us assume that the Laplace transform F(p) of the function f( t) ,  0 < t < 0% is known, with f(t) ~ f,o, 

when t --, 0% and with the functions f(0) and f '  (0) specified (or to be determined). Then, based on [1 1, the function 

f(t) can be represented in the form of a rapidly convergent series: 

where 

(,) f ( t ) = T e x p  c7  ~] F.(Pn) exp 2arni7 + 
r L ~ - - -  oo  

+ 1 - e x p ( - c )  f ( O ) + l f  (0) + e x p ( c ) -  1 - e x p ( - c )  f| , 

F. (Pn) = F (Pn) - f '  (O) + , Pn = 
~ P n  On)  l ' 

c is a constant by whose selection it is possible to optimize the convergence of the solution (Re(c) > 0); ./is a 

constant such that f(t) = / ( l ) ,  when t > l. We note that direct application of the numerical reversion based on the 
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Fourier-series method leads to the necessity of calculating slowly convergent series (with coefficients of the order 

of O(n-l);  when considering test examples in [21 this required - 1000 terms). 

Next we shall examine the case when.:(x, y, z, r) =foo(x, y, z) and g(x, y, z, r) = g,.(x,  y, z) with r > to, 
and introduce the variable 0 = at. Then, on applying the Laplace transform with respect to the variable 0 to 

boundary-value problem (1), we obtain the boundary-value problem concerning the transform t'of the function t: 

( A - p )  r =  ~ : -  t o , (x ,  y ,  z) E D ;  M r = g ,  (x, y ,  z) E S .  (2) 

Here W and ~'are the transforms of the functions W and g. 

Thus, the problem under consideration is reduced to determination of the functions F from Helmholtz 

equations of the form 

( A - k  2) F =  W, (r,  T ,  z) E D ,  (3) 

which satisfy the boundary conditions 

OF 
2t ~n + aF  = a~~ ' (r , T ,  z) G S ,  

Here and below, the body is related to a cylindrical coordinate system (r, q,, z). The given equation will be solved 

by employing approaches developed within the framework of the method of boundary elements [3 ]. For this 

purpose, we use the integral representation of Eq. (3): 

F = f (F' I, a - F I, a') as + f Wadv,  (4) 
s D 

where G -- 1/4~ exp ( -kR);  R 2 = r 2 + r 2 + (z - z0) 2 - 2rr 0 cos (~o - T0); G' is the normal derivative along the 

external normal of the function G at the point (to, TO, z0) of the surface S. Substituting the boundary condition 

into (4) and letting (r, T, z) --, S, we derive the following integral equation for determining the functions F[ s: 

S D S 

For the body of revolution we represent the functions W, Ts, FI s, F'ls in the form of a Fourier series in the angular 

coordinate: 

F ' I s  = ~ (F ' [r)nexp(in~o);  Fls  = ~ (F ' l r )nexp(in~o);  

co 

W = W n exp (in~o) ; T s = ~ Tsn exp (in~o), 

where F is the generatrix of the surface S. Substituting these formulas into (4), we obtain the integral representation 

F n = f r 0 (Fs  n - FnlrG'n) dl + f roedfndD, 
F D 

where Fn is the n-th coefficient in the Fourier series for the function F: 

1 ~ exp ( -  ~ )  cos (n,7) a,7. 
F =  F n exp (inT) , Gn - 4Jr o P 

I I  ~ - -  0 0  

Here p2 = r 2 + r~ + (z - zo) z - 2rro cos (r/). In this case the integral boundary-value equation takes the form 

a ) ro~G~( (5) G I r = - f r 0 F n l r  G'n + y:G ~ dt + f dZ. 
F F 
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The value of T** can be calculated with the help of Eq. (5), when k 'ffi 0. 

2. Determination of the Asymptot ic  Tempera ture  Distribution. Let us consider  the case, frequently 

encountered in practice, in which the temperature of the external medium is a linearly time-varying function Ts = 
ao + Oat. As is known, in this case at sufficiently large time instants the temperature  can be represented 

approximately as 

t = t o + Oq , A q  = 0 ,  At o = t  l .  

In the case of a three-dimensional problem, the integral representations for the given functions are 

T I = C I f  T ' l l s - ~ - T l l s - ~ n  0 ds, 
s 

To= Ct f I s - ~ -  Tols-~no ds +-~" ~ ds, (6) 
s 

where T1 ffi OTi/Ono, j ffi 0.1; O/On and O/Ono are the normal derivatives to the surface S with respect to the 

coordinates (r, 7', z) and (ro, ~o0, z0), respectively; CI ffi I/(4~r), if the point of (r, ~o, z) lies inside of the region 

bounded by the surface S, and CI ffi - 1 / ( 4 z )  for the external region. 

For the case of the body of revolution under  consideration, we represent the prescribed and desired 

functions in the form of a Fourier-series expansion in the angular coordinate: 

a O= ~ a nexp(in~o), a 1 = ~ b nexp(in~),  
g t = - -  c:~ r l = - - ~  

T 0= ~ A nexp(inlo), T 1 = ~ B nexp(inlo), 

where an = an(r, z), bn are the prescribed functions; An and Bn are unknowns. Substituting these formulas into (6) 

and performing transformations, we obtain the integral representations 

A n = C l f r o  A'nlrfn-AnlrOn--- ~ 

( Cl ( / 
Bn= Cl f r 0 B'nlrfn-- Bnlr O0~O) aff" +-~- f r 0 A 'n lrgn-  Anlr ono ) dI', 

where 

2~ 
fn = f cos (n~,) d~,, 

0 RO 

2~ ~2 
gn = f RO cos (n~o) d~o = - ~4 (fn+l + ~fn + A - l ) "  

0 

We determined the functions fn using the recurrence relations 

n +  1 n + 0 , 5  _ 
fn+2=2~ n +  l,----'----~fn+ I n+  ~,sfn,  n > 0 ,  

fn = 4 (DnE (m) + Qn K (m))/ff  , D o = 0 ,  D 1 = 1 - i t ,  Qo = 1, QI = I t , n = 0 ,  1, 

where p = 2/m - 1, m -- 4rro/~, if2 = -~ 2 
and first-order, respectively. We note that 

+ (r - r0) 2, E(m) and K(m) are total elliptic integrals of the second- 

Ogn ro Ogn 
Or - r f n - - ' ~  (fn+l + fn - l ) ,  Oz ---z/n, -z= z -  z O. 
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Fig. 1. Time variation of the temperature T, ~ in a cylindrical shell 

supported by a frame: 1) temperature at the point with coordinates (2, 0, 15) 

and 2) temperature at the point with coordinates (2, 18, 0.01). Solid lines 

refer to the solution constructed by the algorithm under item l; dashed lines 

refer to the asymptotic solution (see item 2). 

Based on Eq. (1), the boundary conditions for the functions introduced above will be written in the form (the case 

is considered in which the body is heated by the external medium Ts according to Newton's law) 

dA n OB n 
2 ~ + a (An - bn) = O , 2 ~ + a (B n - an) = O. (7) 

Using integral representations (6) and boundary conditions (7), we obtain integral equations for the functions An 

and Bn: 

An = - C1 f roAn ~( fn + -~--~_ , as  + C 1 f rob n ~ fnds  , 
F ~,~oj F 

Bn = - CI Y roBn ~ fn + -K'~-~_ , ds  + C 1 y roa n ~ f nds  - 
r v , ~ j  r 

- --f" f roA n gn + dnoj  ds  + robn z 

3. Heating of a Body by Circularly Moving Sources. Now we will consider a body of revolution heated by 

heat sources moving at a constant velocity in a circular direction. Let us take the case when T s = Ts(r,  z, T - co~), 

i.e., in a moving coordinate system 'PI =-- T - cot the tempearture of the external medium is independent of time. 

Here w is the angular velocity of the source. 

Let us introduce the function T-- T(r ,  z, ~'l, 3). For this function to be defined we obtain from relations 
(1) the boundary-value problem 

+ _ _ _ + r _ ~ _ _ _ ~ + _ _ + c ~  0 1 0 T = O ,  
r Or OT1 Oz2 a 0 Tl a 

2t OT - s T  = - T I T = 0  = 0 ,  ( 8 )  

whose solution will be sought for r -~ oo (steady-state regime) in the form of a Fourier series: 

T =  ~ T k ( r ,  z) exp(ikT) = T 0 ( r ,  z) + 2 ~ R e ( T  kexp( ik~) ) .  
k=-oo  k=l  
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Fig. 2. Variation of the dimensionless temperature in a cylindrical shell with 
the angle ?9: 1) y = 2500 m -z, 2) 1000 m -z (dashed lines refer to the 

temperature in an infinite plate at the same parameters). 

Substi tuting this series into relations (8), we see that  the functions Tk (k = 0, -.+ 1 . . . .  ) a re  de te rmined  from the 

equations 

(O.~_r ~ 1 O k 2 02 2) 
+ 2 + m - y ~  T ~ = 0  (9) 

r Or r Oz 2 

and  that  they satisfy the boundary  conditions 

O7", 

-0-h-n - a T k  = - a T s k .  

Here  y~, = - i ( o J / a ) k ,  Re (yk )  > O, Tsk are the coefficients of the Fourier-series expansion of the function Ts, i.e., 

1 2~ 
Tsk = ~ f T s exp ( -  ik~,) d~, .  

o 

The  solution of Eq. (9) will be determined by the method of boundary  elements  using the representat ion 

rk = Y ro 6k - dk) - ack - ark (10) 
S s On 0 ' On ' 

Gk is the fundamenta l  solution of Eq. (9), i.e., 

2~ r 0 exp ( -  y ~ )  
c k = - ~ f cos ( ~ )  p a,1. 

0 

4. Results of  Numerical  Calculations. Computer  programs have been developed on the basis of the foregoing 

solutions. We will give the results of calculations of temperatures  for some particular cases that  will allow the 

effectiveness of the approach to be judged. 

A. We calculated numerically the temperature  of a s tructure element having the form of a cylindrical shell 

RI < r < R2, I z I < L supported at r = R2, I zl < 0.01 m by a f rame of height 0.13 m. The  heat t ransfer  coefficients 

were taken to be a = 65 kca l / (m2"deg)  at r = RI and a = 5 kca l / (m2"deg) ,  when r > R 1. In the calculations i4was 

assumed that R! = 2 m, R2 = 2.05 m, L = 0.15 m, 2 = 9.8 kca l / (m-deg ) ,  a = 0.0000045 m / s e c  2. The  cross sections 

z = _ L were taken to be thermally  insulated. The  tempera ture  of the external medium was chosen in the form Ts 

= f ~ ,  f = 7,, ~" -- - 0 .00364  deg/sec ,  where 
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Fig. 3. Variation of the dimensionless temperature  in a circularly welded 

cylindrical shell with the angle T (a) and z (b); a: 1) 7 --- 2500 m -2,  2) 1000; 

b: 1, 3) heating by one source with the center at the point (R2, 0) when 7 = 

2500 m -2  (1) and 1000 (3); 2, 4) heating by two sources with the centers at 

the point (R2 ,  +_.0.04) when 7 = 2500 m -2  (2) and 1000 m -2  (4). 

@ = 

2 "r 2 - 0 , 5 T T  2 T --TT 0 

0,5T~ Y0 0,25TT ~ 
, T - - < T  0 , 

I, T > T  0 . 

Z 

We note that for these boundary  conditions there is a problem of bilateral freezing of the structure element 

on the assumption that the temperature  of the external  medium varies from 0 to the prescribed one T~s = -173~  

at time r0 according to a quadratic law. 

Figure i shows the change in the temperature  at the points with coordinates (2, 0, 15) (curves 1) and (2, 

18, 0.01) (curves 2) in time at 70 --- 0.5, TO = 54,000 sec. The  solid lines represent the results obtained by the general  

procedure, while the dashed lines illustrate the results obtained with allowance for the linear time variation in the 

temperature of the external  medium (asymptotic solution). 

B. Using the given algorithm, we calculated the s teady-s ta te  temperature  in a cyl inder  R 1 < r < R2, 

- L  < z < L, heated by means of heat exchange by a circularly moving external medium whose tempera ture  is 

described by the Gauss normally circular law: 

T s = T O exp ( -  y (z 2 + n2~o2)), 

where TO = const at r = R2 and T O = 0, when r < R2;  y is the coefficient of the concentration of heating. For the 

case of local heating, when ~2RzZ << 1, t h e  coefficients of the Fourier-series expansion of the external  medium 

temperature are written as 

r s  t = 7 .  o e x p ( - y z  2) exp - , k = 0 ,  __ 1 . . . .  
2~/R z 

In the calculations it was assumed that a -- 1 m / s e J ,  2 = 1 kca l / (m.deg) ,  R! -- 0.98 m, a = 20 kca l / (mZ 'deg) ,  R2 

= 1 m, v = 0.02 m/sec ,  L = 0.07 m. 

Figure 2 illustrates the change in temperature 7. as a function of ~o. Curves 1 refer to Y = 2500 m -z ,  curves 

2 to y = 1000 m -2. The  dashed lines denote the change in temperature for Rl,z -* ~ ,  R2 - Rt -- 0.02 m in an 

infinite plate for the same parameters obtained from the exact formulas of [4 ]. We can see from the figure that in 

the given case the curvature has virtually no effect on the temperature distribution. 
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Fig. 4. Variation of the dimensionless tempearture in a cylindrical shell 

supported by a frame with the angle ~o (a) and z (b): l) y -- 2500 m -2, 2) 

1000. 

We calculated the temperature in a circularly welded cylindrical shell heated by one and two moving heat 

sources (investigations were carried to select heat treatment regimes to remove residual stresses). The boundary 

of the shell was described by the relations 

r = R  1 , Izl < Z ;  z = _ L ,  R I < r < R 2 ;  r = R 2 ,  a l<  Iz[ < L ;  

I zl < a , ,  r = R 2 + d / 2  (1 + cos (:rz/al))  . 

The results of the calculations of the temperature (at the parameters given above for the case of the 

cylindrical shell and L -- 0.07 m, al -- 0.01 m, d = 0.005 m) on the outer side of the shell in the cross sections z -- 

0 and ~o -- 0 are presented in Fig. 3. As is seen from the figure, in the case of heating by two moving sources the 

maximum temperature turned out to be substantially smaller than that for one source, due to the difference in the 

shapes of the surfaces of the heated sources. 

Figure 4 gives the calculated results for the temperature in a cylindrical shell supported by a frame on 

the external side (at the above-given parameters) and heated by two moving heat sources with centers at the 

point (R2, __C.C), C = 0.06 m. 

As is seen from the figures, in the present case the difference in the geometry of the shells has a little 

effect on the temperature in the heated regions. 

N O T A T I O N  

T, temperature; r, time; A, Laplace operator; 2, thermal conductivity coefficient; a,  heat transfer coefficient; 

to, angular velocity of source; y, coefficient of heating concentration; (x, y, z), Cartesian coordinate system; (r, ~o, 

z), cylindrical coordinate system; a, thermal diffusivity ccefficient; v, linear velocity of source. 
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